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Abstract: - In this paper, we propose a new approach to solve the maximal constraint satisfaction problems 

(Max-CSP) using the continuous Hopfield network. This approach is divided into two steps: the first step 

involves modeling the maximal constraint satisfaction problem as 0-1 quadratic programming subject to linear 

constraints (QP). The second step concerns applying the continuous Hopfield network (CHN) to solve the QP 

problem. Therefore, the generalized energy function associated with the CHN and an appropriate parameter-

setting procedure about Max-CSP   problems are given in detail. Finally, the proposed algorithm and some 

computational experiments solving the Max-CSP are shown.  
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1. Introduction 

A largely unexplored aspect of Constraint 

Satisfaction Problem (CSP) is that of over-

constrained instances for which no solution exists 

that satisfies all the constraints or it is difficult to 

satisfy these constraints. Therefore, a key question 

is to determine a best possible assignment which 

maximizes the number of satisfied constraints. 

These problems are mentioned in the literature as 

Maximal Constraint Satisfaction Problems (Max-

CSP). In this way, we are often looking for solutions 

which violate the minimum number of constraints. 

In this paper, we restrict ourselves to Max-CSP 

where all constraints are considered equally 

important and the goal is to find the assignment that 

maximizes the number of satisfied constraints. 

Several real word problems can be formulated as 

maximal constraint satisfaction problems, such as 

planning, scheduling, warehouse location problem, 

max-clique and max-cut problems. Solving the 

Max-CSP requires assigning a value for each 

variable from each domain in such a way that the 

maximal of constraints are satisfied. However, a 

Max-CSP   has often a high complexity, requiring a 

combination of heuristics and combinatorial search 

methods to be solved in a reasonable time. Then, the 

class of Max-CSP is a subset of the class of NP-

complete problems [9]. 

Formally speaking, a maximal constraint 

satisfaction problem is one of the most difficult and 

interesting problems for mathematicians, 

operational researchers and computational scientists. 

Thus, a number of different approaches have been 

developed to solve this problem such as branch and 

bound algorithm [8, 10], Enhancements of branch 

and bound methods for the maximal constraint 

satisfaction problem [17] and Near-Optimal 

Algorithms for Maximum Constraint Satisfaction 

Problems [1]. In this work, we propose a new model 

of Max-CSP which consists in minimizing the 

quadratic objective function subject to linear 

constraints (QP). To solve the QP problem, many 

different methods are tried and tested such as 

interior points, semi definite relaxations and 

Lagrangian relaxations [5, 20]. In this paper, we 

introduce the continuous Hopfield network for 

solving the QP problem. 

Hopfield neural network was introduced by 

Hopfield and Tank [11, 12]. It was first applied to 

solve combinatorial optimization problems. It has 

been extensively studied, developed and has found 

many applications in many areas, such as pattern 

recognition, model identification, and optimization. 
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It has also demonstrated capability of finding 

solutions to difficult optimization problems [7]. 

In this paper, our main objective is to propose a 

new approach for solving the maximal constraint 

satisfaction problems using the continuous Hopfield 

network. This paper is organized as follows: In 

section 2, we propose and describe the new model 

of the binary Max-CSP   problem. This problem is 

formulated as a quadratic assignment problem with 

linear constraints. A new theorem, which aims to 

define the relation between the Max-CSP and the 

quadratic programming, is demonstrated. In section 

3, an introduction of CHN is presented, the 

generalized energy function associated with the 

Max-CSP is defined and a direct parameter setting 

procedure is computed. Finally, the implementation 

details of the proposed approach and experimental 

results are presented in the last section. 

 

2. Modeling the Max-CSP  

A constraint satisfaction problem refers to the 

problem of finding values to a set of variables, 

subject to constraints on the acceptable combination 

of values. Solving this problem requires finding 

values for problem variables from each domain, 

which satisfies all members of constraints. In some 

cases, it may be impossible or impractical to solve 

these problems completely. This case is known as a 

maximal constraint satisfaction problem (Max-

CSP). For a Max-CSP, a relevant question, both 

theoretically and practically, is to determine an 

assignment of values to variables such that the 

number of satisfied constraints is maximized. 

Therefore, a maximal constraint satisfaction 

problem is a constraint satisfaction problem in 

which one is prepared to settle for partial solutions; 

these solutions may violate some constraints. In 

general, a maximal constraint satisfaction problem 

forms a class of models representing problems that 

have common properties, a set of variables and a set 

of constraints [15, 16, 21]. The variables should be 

instantiated from a discrete domain. The study of 

Max-CSP has become focused on binary maximal 

constraint satisfaction problem. Formally speaking, 

a maximal constraint satisfaction problem can be 

conveniently defined by means of the notion of 

constraint satisfaction problem (CSP). A CSP is a 

triplet (Y, D, C) where [21]:   

‐  1,..., nY y y is a set of  variables, 

‐  1( ),..., ( )nD D y D y  is a finite collection of 

value domains associated with the variables, 

where each ( )iD y  is the set of id  possible 

values for iy ,  

‐  1,..., mC C C  is a set of constraints which 

restricts the values that the variables can 

simultaneously take.  

Given such a constraint satisfaction problem 

(Y,D,C), the Max-CSP becomes the finding of an 

assignment of the values of D to the variables of V 

such that the number of satisfied constraints is 

maximized. The Max-CSP can be formulated as a 

couple (S, f) where S is the set of all possible 

assignments of values of S to the variables of V and 

f is the number of unsatisfied constraints of C [8]. A 

solution of a Max-CSP is a total assignment that 

minimizes the number of constraint violations. In 

this context, we propose a new model of the Max-

CSP as 0-1 quadratic programming, which consists 

in minimizing a quadratic function subject to linear 

constraints. In the following, we want to present a 

new formulation of the binary Max-CSP.  

For each variable iy  of the Max-CSP   problem, 

we introduce id binary variables irx such that:  

1 =
= ( )        (1)

0

i r

ir r i

if y v
x v D y

Otherwise






 

Where {1, ....., }
i

r d  and {1,....., }i n . 

 

This matrix is easily converted to a N-vector: 

 11 1 1
1

T

d n nd
n

x x x x x      

With 
=1

=
n

ii
N d  and =| ( ) |

i i
d D y  

Each variable iy  must take a unique value rv

from its domain ( )iD y . Then the linear constraints 

of Max-CSP are defined below:  

=1

= 1 {1,...., }               (2)

d
i

ir

r

x i n 
 

Each constraint ijC between the variables iy  and 

jy is defined by its relation ijR  such that it is a 

subset of the Cartesian product ( ) ( )i jD y D y , 

specifying the compatible values between iy  and 

jy . For each couple ( , )
r s

v v , we generate a 

constant:  

1  ( , ) 

0    ( , ) 
                    (3)

r s ij

irjs

r s ij

if v v R
q

if v v R








  

 Where {1,....., }i n  and {1,....., }j n . 
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Remark 1. 

If there is no constraint between two variables iy  

and jy  , ( , )
r sijR v v  holds for any pair ( , )

r s
v v  of 

( ) ( )i jD y D y . In this case: 

= 0   {1,....., },  {1,....., }
irjs i j

q r d s d   
 

 

Each constraint ijC  can be characterized by the 

following expression:  

1 1

ji

ir js

dd

ij irjs

r s

x xS q
 


 

The following theorem defines the link between 

the constraint 
ij

C
 
and the expression

ij
S . 

 

Theorem 1. 

Let 
ij

x  be the binary variable which is defined in 

the expression (1) such that
1

= 1   {1, ....., }
i

ir

d

r

x i n


 . 

For each constraint 
ij

C  between two variables 
i

y  

and
j

y , we have:   

‐ 
ij

S = 1 if and only if the constraint 
ij

C
 
is violated. 

‐ 
ij

S  = 0 if and only if the constraint 
ij

C
 
is satisfied.  

Proof.  

* 
ij

S = 1 then the constraint 
ij

C
 
is violated

=1 =1
= 1 = 1

d d
i j

ij irjs ir jsr s
S q x x    

Then  ! {1,..., }
i

r d   and  ! {1,..., }
j

s d   such 

that  = 1.
irjs ir js

q x x  

So = 1
irjs ir js

q x x   = 1
irjs

q , = 1
ir

x  and = 1.
js

x  

In these cases, we have:   

‐ = 1 =
ir i r

x y v   

‐ = 1 =
js j s

x y v   

‐ = 1 ( , )
irjs r s ij

q v v R    

Then 
ij

C   is violated 

 

* The constraint Cij  is violated = 1.
ij

S  

ij
C

 
is violated if  ! ( )

r i
v D y   and 

! ( )
s j

v D y   such that =
i r

y v , =
j s

y v  and 

( , )
r s ij

v v R . 

Then  ! {1,..., }
i

r d   and  ! {1,..., }
j

s d   such 

that = 1
irjs ir js

q x x . 

Therefore, we have 
=1 =1

= 1
d d

i j

irjs ir jsr s
q x x  . 

Finally = 1
ij

S . 

 

* = 0
ij

S   the constraint 
ij

C is satisfied. 

We have 
=1 =1

= = 0
d d

i j

ij irjs ir jsr s
S q x x   

Then = 0
irjs ir js

q x x  {1,..., }
i

r d   and 

{1,..., }
j

s d    

Moreover, we have:  

‐ 
=1

= 1  ! {1,..., }
d
i

ir ir
x r d   such that 

ir
x = 1  

‐ 
=1

= 1  ! {1,..., }
d

j

js js
x s d   such that 

js
x = 1  

Since = 0 = 0
irjs ir js irjs

q x x q  

Then  ! ( )
r i

v D y   and  ! ( )
s j

v D y   such that

=i ry v , =j sy v  and ( , )r s ijv v R . 

Finally 
ij

C  is satisfied. 

 

* The constraint 
ij

C  is satisfied = 0
ij

S . 

Cij  is satisfied, then we have two values ( )
r i

v D y  

and ( )
jsv D y  which were affected respectively to 

yi and yj such that the tuple ( , )
r s ij

v v R .  

Therefore, we have:   

‐ =  ! {1,..., }
i r i

y v r d   such that 
ir

x = 1 

‐ =  ! {1,..., }
j s j

y v s d   such that 
js

x = 1                                                        

‐ ( , ) = 0
r s ij irjs

v v R q    

Then
=1 =1

= = 0
d d

i j

ij irjs ir jsr s
S q x x  .    

 

Remark 2. 

‐ If there is no constraint between two variables 

iy  and jy  then 
ij

S = 0 (See remark 1).  

‐ In Max-CSP    problem, we cannot define the 

constraint 
ii

C  between the variable iy  and 

itself. In this case, 
ii

S  = 0 {1,....., }i n  .  

Basing on theorem (1), the objective function f(x) 

can be formulated in the following way:   
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=1 =1

( ) =                    (4)
n n

ij

i j

f x S
 

Where 

            

1       

0      

ij

ij

ij

if C is violated
S

if C is satisfied



  

The matrix form of the objective function f(x) is the 

following: 

( ) =                          (5)Tf x x Q x
 

 

The elements of the matrix Q are qirjs where

{1,..., }i n , {1,..., }j n , {1,..., }
i

r d and 

{1,..., }
j

s d . 

Recall that, we can transform the matrix Q   into 

symmetric matrix using the following expression: 

 
1

2

T

Q Q Q  

 
Then, the objective function can be written in the 

following matrix form: 

1
( ) =                            (6)

2

T
f x x Qx

 
Where Q is N×N symmetric matrix. Finally, the 

binary Max-CSP    problem is modeled as a 0-1 

quadratic programming with a quadratic function 

subject to linear constraints: 

1
( ) =

2

( )

=

{0,1}

T

N

Min f x x Qx

Subject toQP

Ax b

x







  

 

Where Q is an N×N symmetric matrix, A is an 

n×N matrix and b is an n vector. This new 

optimization model puts in interaction all 

constraints, and then the Max-CSP    problem can be 

considered globally during the search. Additionally, 

when solving the model of this problem, we could 

affect each variable a value from its domain, at the 

same time, satisfying the maximum of constraints. 

The following theorem determines the relation 

between a binary Max-CSP    problem and an 

optimization model QP. 

 

Theorem 2. 

Let V(QP) be an optimal value of the 0-1 quadratic 

programming. The number of violated constraints in 

maximal constraint satisfaction problem is equal to 

V (QP). 

 

Proof. 

Let z be the optimal value of the QP problem. 

If V (QP) = z, then we have: 

1 1

( )    
n n

ij

i j

f x S z
 

 
 

Recall that  

1       

0      

ij

ij

ij

if C is violated
S

if C is satisfied



  

Where {1,..., }i n and {1,..., }j n  

Finally, if 
1 1

( )    
n n

ij

i j

f x S z
 

    then z is the sum 

of the violated constraints. 

 

Remark 3. 

The proposed model can easily detect what 

constraints are violated in the Max-CSP    problem 

and what is the assignment tuple ( , )
r s

v v  that violate 

each constraint. Formally speaking, if 

=1 =1
= = 1

d d
i j

ij irjs ir jsr s
S q x x  , then the violated 

constraint is Cij and the tuple that violates this 

constraint is ( , )
r s

v v . 

 

Remark 4. 

The proposed theorem (2) generalizes the theorem 

(3.1) proposed in the work [3]. The theorem (3.1) 

establishes the links between a binary CSP and an 

optimization model QP. In this way, when we have 

V (QP) =0, the binary Max-CSP problem has a 

solution which satisfy all constraints. 

 

Example 1. (Robot clothing problem [8]) 

In this example, we propose an approach for solving 

the Robot clothing problem based on artificial 

intelligence concepts and especially constraint 

satisfaction problems. This problem is to dress a 

robot using the existing wardrobe: Cordovans and 

sneakers for SHOES, a green and a white SHIRT, 

and three pairs of SLACKS: denim, blue, and gray.  

This problem is described by the figure (1). 

In order to simplify the representation of this 

problem, the elements of this latter can be coded in 

the following way: 

‐ The variables SHOES, SHIRT and SLAKS are 

respectively coded by y1, y2 and y3. 

‐ The values Cordovans, sneakers, green, white, 

denim, blue and gray are respectively 

represented by v1, v2, v3, v4, v5, v6 and  v7. 
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Fig.1: Robot clothing problem. 

 

Then, the robot clothing problem can be 

reformulated as the following Max-CSP    problem 

(Fig. 1):   

‐  1 2 3, ,Y y y y  is the set of three variables,  

‐  1 2 3( ), ( ), ( )D D y D y D y where:   

  1 1 2( ) ,D y v v , 

  2 3 4( ) ,D y v v , 

  3 5 6 7( ) , ,D y v v v ,  

‐  1 2 1 3 2 3( , ), ( , ), ( , )C C y y C y y C y y  is the set 

of three constraints where:   

  12 1 4( , )R v v , 

  13 1 7 2 5( , ), ( , )R v v v v , 

  23 3 7 4 5 4 6( , ), ( , ), ( , )R v v v v v v . 

We show that, this pedagogical problem is 

formulated as maximal constraint satisfaction 

problem. In this example, the reformulation of the 

objective function is the following (Equation 4):  

      12 13 23
( ) =f x S S S 

 

11 21 12 21 12 22 11 31 11 32

12 32 12 33 21 31 21 32 22 33

( ) =

          

f x x x x x x x x x x x

x x x x x x x x x x

   

    
 

     Then, the objective function of the robot clothing 

problem can be formulated by the following 

expression:  
1

( ) =
2

Tf x x Qx  

Where  

            

0 0 1 0 1 1 0

0 0 1 1 0 1 1

1 1 0 0 1 1 0

= 0 1 0 0 0 0 1

1 0 1 0 0 0 0

1 1 1 0 0 0 0

0 1 0 1 0 0 0

Q

 
 
 
 
 
 
 
 
 
 
 

 

 

The constraints (2) imply that:  

                    

11 12

21 22

31 32 33

            = 1

= 1

   = 1

          

x x

x x

x x x





 







 

These constraints are equivalent to Ax = b where         

  

           

1 1 0 0 0 0 0

0 0 1 1 0 0 0 = 1 1 1

0 0 0 0 1 1 1

,   
T

A b

 
 
 
 
 

 

and    
11 12 21 22 31 32 33

=
T

x x x x x x x x  

Finally, we consider the following 0-1 quadratic 

program (QP): 

7

1
( ) =

2

( )  

=

{0,1}

T
Min f x x Qx

Subject toQP

Ax b

x







  

 

The main idea of this paper is to use the new 

model of the Max-CSP    problem described in this 

section and to apply the continuous Hopfield 

network in order to give a good solution for the 

maximal constraint satisfaction problem. 
 

3. Max-CSP   solved by continuous 

Hopfield networks 

As can be noticed, the maximal constraint 

satisfaction problem is modeled as a 0-1 quadratic 

programming with a quadratic function subject to 

linear constraints. In this section, we present a 

general approach to solve the Max-CSP     problems 

using the continuous Hopfield networks. 

The neural networks are efficient approaches for 

solving different problems in different areas [4, 6, 

11, 2]. In the beginning of the 1980, Hopfield 

published two scientific papers, which attracted 

much interest. This was the starting point of the new 

area of neural networks, which continues today. 

Hopfield showed that models of physical systems 

could be used to solve computational problems. 

Moreover, Hopfield and Tank [11, 12] presented the 

energy function approach in order to solve several 

optimization problems [4]. Their results encouraged 

a number of researchers to apply this network to 

different problems. The continuous Hopfield neural 

network is a generalization of the discrete case. The 

common output functions used in the networks are 

hyperbolic tangent functions. Afterwards, many 

 SHOES 

 SLACKS  SHIRT 

{Cordovans, sneakers} 

{(Cordovans, white)} 
{(Cordovans, gray), 

(sneakers, denims)} 

{denims, blue, gray} {green, white} 

{(green, gray), 

(white, denims), 

(white, blue)} 
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researchers implemented CHN to solve the 

optimization problem, especially in mathematical 

programming problems. 

The CHN is a fully connected neural network, 

which means that every neuron is connected to all 

other neurons. The connection weights between the 

neuron i and neuron j is represented by ijW and each 

neuron i has an offset bias 
b

i
i  [13]. The dynamics of 

the CHN is described by the following differential 

equation:  

           
=                       (7)

bdu u
Wx i

dt 
  

 
 Where u, x and i

b
 will be the vectors of neuron 

states, outputs and biases. The output function 

= ( )
i i

x g u  is a hyperbolic tangent, which is bounded 

below by 0 and above by 1. 

0

1
( ) = (1 tanh( ))  = 1,...,       (8)

2

i

i

u
g u where i N

u


Where 
0

u
0

( )u IR


  is a parameter used to control 

the gain (or slope) of the activation function. 

For solving any combinatorial problems, it is 

necessary to map it in the form of the energy 

function associated with the continuous Hopfield 

network. The expression of this energy function is 

the following:  

1
( ) = ( )                    (9)

2

T b T

E x x Wx i x 

 
In this work, our main objective is to solve the 

QP problem, i.e., solving maximal constraint 

satisfaction problem using the continuous Hopfield 

network. Therefore, the most important step consists 

in representing or mapping the maximal constraint 

satisfaction problem in the form of an energy 

function associated with the continuous Hopfield 

network. According to the proposed model, which 

consists in modeling the Max-CSP into a quadratic 

programming QP, this step of representation 

becomes easy and more general. Then, the 

continuous Hopfield network can be used to solve 

the maximal constraint satisfaction problem. 

We show that the model of maximal constraint 

satisfaction problem is a 0-1 quadratic programming 

with N variables and n linear constraints.   

1
( ) =

2

( )  

=

{0,1}

T

N

Min f x x Qx

Subject toQP

Ax b

x







  

In order to represent the latter QP problem, the 

energy function must be defined by two expressions 

E
O
(x) and E

C
(x). The first one is directly 

proportional to the objective function of the QP 

problem and the second one is a quadratic function 

that penalizes the violated constraints of the QP 

problem. Therefore the energy function associated 

with the CHN is:  

( ) = ( ) ( )                  (10)O CE x E x E x x H    
Where H is set of the Hamming hypercube: 

{ [0,1] }NH x   
We notice that the QP problem has only the 

family of linear constraints:                      

=1

( ) = =1 {1,..., }                        (11)

d
i

i ir

r

e x x i n 
 

The following constraint {0,1}irx   can be set 

up in the following way: 
2{0,1} = 0ir ir irx x x  

 
Then, the QP problem is equivalent to:  

2

( )  

1
( ) =

2

( ) = 1 {1,..., }

= 0

T

i

ir ir

QP

Min f x x Qx

Subject to

e x i n

x x

 









  

Where {1,..., }i n  and {1,..., }ir d . 

In our case, the following generalized energy 

function for the QP problem is proposed:       

2

=1 =1

=1 =1

1
( ) = ( ) ( ( )) ( )

2

          (1 )                                    (12)

n n

i i

i i

d
n i

ir ir

i r

E x f x e x e x

x x

  



 

 

 


 

 With IR  , IR  , IR  , IR  and IR 

. The algebraic form of the generalized energy 

function is:   

=1 =1 =1 =1 =1 =1 =1

=1 =1 =1 =1

1
( ) =

2 2

         (1 )                      (13)

dd d d
jn n ni i i

irjs ir js ir is

i j r s i r s

d d
n ni i

ir ir ir

i r i r

E x q x x x x

x x x




 



  

 

 

 

To determine the weights and thresholds, we use 

the assimilation between equation (9) and the 

algebraic form of the generalized energy function. 

Then the weights and thresholds of the connections 

between N neurons are: 

(1 ) 2
            (14)

                                 

irjs ij irjs ij ij rs

b

ir

W q

i

      

 

    

  



  
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ij  is the Kroenecker delta. 

1 =
=

0
ij

if i j

if i j






  

In this way, the quadratic programming has been 

presented as an energy function of continuous 

Hopfield network. To solve an instance of the QP 

problem, the parameter setting procedure is used. 

This procedure assigns particular values for all 

parameters of the network, so that any equilibrium 

points are associated with a valid affectation of all 

variables when all the constraints in QP problem are 

satisfied. We observe that the weights and 

thresholds of the continuous Hopfield network 

depend on the parameters α, β,  and γ. To solve the 

QP problem via the CHN, an appropriate setting of 

these parameters is needed. In this section, our 

objective is to determine these parameters. The 

following sets need to be defined in order to 

determine each state for each variable.   

HC is a set of the Hamming hypercube corners:  

{ : {0,1}, =1,..., }
C i

H x H x i N     
HF is a set of feasible solutions: 

{ : = }F CH x H Ax b 
 

The dynamics of the CHN must ensure that any 

invalid solution 
F

x H  cannot be a stable point. 

Any constraint which is imposed on the dynamics of 

the CHN must be translated into a set of constraints 

on its parameter values; this is the kernel of the 

parameter setting. A feasible solution is guaranteed 

by the CHN from a stability analysis of the 

Hamming hypercube corners set:  

{ : {0,1}, {1,..., }, {1,..., }}
C ir i

H x H x i n r d      
 

It is noted that a feasible solution is identified by a 

vector
F C

x H H H   . 

The parameter-setting procedure is based on the 

partial derivatives of the generalized energy 

function: 

=1 =1 =1

( )
= (1 2 )       (15)

d d
jn i

irjs js is ir

j s sir

E x
q x x x

x
   


   


 

 

A point x H will be an equilibrium point for the 

CHN if and only if the two following relations are 

satisfied: 

( )
0 = 0

             (16)
( )

0 = 1

ir

ir

ir

ir

E x
such that x

x

E x
such that x

x
















  

This procedure uses the hyperplane method [19], 

so that the Hamming hypercube H is divided by a 

hyperplane containing all feasible solutions. To 

avoid the stability of any no feasible and corner 

solution
C F

x H H  , the following instability 

conditions are imposed:  

( )
= 0

               (17)
( )

= 1

ir

ir

ir

ir

E x
such that x

x

E x
such that x

x






 













  
 Based on this hyperplane method and the 

associated half-spaces, the complementary corners 

set of the feasible solutions for the QP problem is 

partitioned and a set of analytical equations of the 

CHN parameter is proposed. The hyperplane 

method is briefly explained below; however, for 

simplicity reasons the following parameters 

constrains are first assigned:   

‐ To minimize the objective function, we impose 

the following constraint: α>0 

‐ On the other hand, to penalize the non-

feasibility of the family of linear constraints

( )ie x , it is natural to impose the following 

constraint: 0  .  

‐ In order to guarantee the instability of the 

interior points 
C

x H H  , some initial 

conditions are imposed on some parameters: 

= 2 0                (18)
irir

W      

Where {1,..., }i n   and  {1,..., }ir d  .  

 

The partition of 
C F

H H  is defined as: 

1,1 1,2
=  

C F
H H H H 

 
 

1,1 0
{ : ( ) > 1} { ( ) }

i
H i e x e x n     

Where 
0 =1
( ) = ( )

n

ii
e x e x . 

In this case, one variable 
i

y has been assigned 

two different values ,  
r s

v v   in ( )
i

D y  so = = 1
ir is

x x . 

Consequently, the following instability condition is 

imposed:  

( )
2                   (19)

ir

E x

x
   


   


 

 

  
1,2 0

{ : ( ) < 1} { ( ) < }
i

H i e x e x n    

In this case, one variable 
i

y  has not been 

assigned any value ( )
r i

v D y , such that = 0
ir

x

{1,..., }
i

r d  . Therefore, the following instability 

condition is imposed:  
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( )
                   (20)

ir

E x
d

x
   


    


       

With 

1 1

{1,..., }{1,..., },
i

jdn

irjs

j s

d Max r di nq
 

 
 
 
 
  

Then, we can determine the parameters setting by 

resolving the following system:  

> 0 , 0

2 0 (21. )

2 = (21. )

= (21. )

a

b

d c

 

 

   

   



  

 

  






  

The inequality (21.a) guaranteed the satisfaction 

of the integrity constraints ( {0,1}
ir

x  ), but the 

equations (21.b) and (21.c) guaranteed the 

satisfaction of the linear constraints. These 

parameters setting are determined by fixing ,   

and computing the rest of parameters ,     and :   

= 2

= /2               (22)

= 3

d  

 

  









  

Finally, the weights and thresholds of CHN 

(system 14) can be calculated using these 

parameters setting. Finally, we obtain an 

equilibrium point for the CHN using the algorithm 

depicted in [18], so compute the solution of 

constraint satisfaction problem.  

 

4. Computational experiments 

The algorithm of maximal constraint satisfaction 

problem was developed to find a solution via the 

continuous Hopfield network. Moreover, to 

understand our approach, the resolution of the robot 

clothing problem is described. 

 
4.1 Description of the proposed algorithm for 

solving the Max-CSP    problem 

In order to find a solution to the maximal 

constraint satisfaction problem via the continuous 

Hopfield network, an algorithm was developed. The 

diagram of this solver is described by the following 

plan (Fig. 2). Recall that, a solution is an assignment 

of values to all variables so that the maximum of 

constraints are satisfied. The main steps of this 

algorithm are the following:   

‐ The first step is to read data of the Max-CSP   

problem and reformulate it into XML file. This 

reformulation requires developing techniques to 

extract data (domains, variables, relationships 

and constraints).  

‐ The next step concerns modeling the Max-CSP    

problem as 0-1 quadratic programming 

(determining the matrix Q, the matrix A and the 

vector b)  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2: Diagram of the proposed algorithm. 

 

‐ The last step concerns using the CHN to obtain 

the solution of this model, so that the number of 

violated constraints in Max-CSP     is equal to 

the optimal value V(QP) obtained by the 

continuous Hopfield network (theorem 2). 

Example 2. 

As can be noticed, the robot clothing problem, 

described in the example 1, is modeled as the 

following:  

7

1
( ) =

2

( )  

=

{0,1}

T
Min f x x Qx

Subject toQP

Ax b

x









 

Before applying the continuous Hopfield network 

to solve this problem, the weights and thresholds of 

the CHN are computed using the parameters setting

 ,  ,   and  . These parameters are determined 

by fixing the ( ,  ) and solving the system (22).  

Input data of  Max-CSP 

Model of Max-CSP(Q,A,b) 

CHN(Wij, ii
b) 

V(QP) = z 

Solution 

End 
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Finally, the solution is given by our solver in the 

0.001 second (time of resolution). The value for 

each variable is:
1 1=y v , 

2 3=y v  and 
3 7=y v  such that 

this solution is coded in the following way: 

= CordovansSHOES ,  =SHIRT green  
and 

=SLACKS gray . We show that, the number of 

violated constraints is 1 because the tuple 

( , )Cordovans green  violate the constraint 

( , )C SHOES SHIRT (remark 3).  

 

4.2 Numerical results 

In order to show the practical interest of the 

proposed approach, the experiments are achieved to 

solve some typical problems of different natures. 

These series represent a large spectrum of instances 

[22]. These experiments are effectuated in personal 

computer with a 2.79 GHz processor and 512 MB 

RAM. The performance has been measured in terms 

of the CPU time per second.  

This solver is modeled by the Unified Modeling 

Language method and implemented by java 

language. The starting points are chosen in such a 

way that the points corresponding to the most 

constrained variables are the most favored in the 

processing. This choice allows the continuous 

Hopfield network to handle in a first order the 

variables most constrained. This process lead to an 

assignment of values to variables such that the 

number of satisfied constraints is maximized. This is 

guaranteed by a good affectation to the variables 

most constrained. Therefore, the maximum of 

constraints in the problem are satisfied. Finally, the 

starting points are randomly generated by the 

following expression:  

2
= 0.8 0.19 10i

ir

NVC
x U

NVMC


 

 
Where 

i
NVC  is the number of participation for 

each variable 
i

y  in the set of constraints C, 

  = max 1,...,NVMC NVC
i

i n  representing the 

more present variable in the constraints of the Max-

CSP  problem, and U is a random variable in the 

interval [-0.5, 0.5]. Recall that n is the number of 

variables. Based on a series of experiments,   and 

  are determined by the following values:   

1
=

n
 , 

4
= 10


 

In this experimentation, some instances as 

benchmarks for the first round of the 2008 Max-

CSPs [22] solver competition are used to test this 

algorithm (See    Table 1). 

A statistical study was represented in order to 

examine the quality of our approach. This study is 

based on the computation of performance operators. 

In fact, the quality of solutions obtained by our 

approach was evaluated in terms of performance 

report: 
number of violated constraints obtained by this approach

=
best number of violated constraints obtained by the best solver



   

Among these operators performance, we have 

(Table 1): 

‐ Ratio mode: the ratio between the most repetitive 

(mode) number of violated constraints (the optimal 

value obtained by CHN) in the number of run and 

the least number of violated constraints (best 

results existing in the literature) obtained by the 

best solver, Ratio mean: the ratio between the 

average number of violated constraints in a 

number of run and the best results existing in the 

benchmarks obtained by other solver,  

‐ Ratio minimum : the ratio of the smaller number 

of violated constraints (better results obtained by 

our solver) and the best result existing in the 

literature obtained by other solver, 

‐ Mean of CPU time: the average time consumed to 

obtain the solution in a number of run. 

We show that, for each instance, if Ratio minimum 

is less than 1 then the proposed approach gives the 

best results than the others, i.e., gives a solution that 

violates fewer constraints compared to the best 

existing solver. Also Ratio minimum is superior to 1 

then the proposed approach cannot give the results 

better than the others, i.e., gives a solution that 

violates more constraints compared to the best 

existing solver. Moreover, if Ratio minimum is 

equals to 1, in this case the given results is similar to 

the best solver existing in benchmarks (Table 1). 

In comparison with other Max-CSPs solvers, the 

time of resolution obtained by our software is better 

than others; it does not exceed 1 second for the most 

of instances. Generally, our solver is very 

successful, it happens to get the solution to the 

maximal constraint satisfaction problems in a 

minimum time than the author solvers of Max-CSP    

[22] (See Table 1). For example, instances  “kbtree-

9-7-3-5-90-08”, ”cnf-2-40-1800-067529”,  “maxcut-

30-400-5”, “maxcut-30-340-5”, etc, the proposed 

solver gives a solution that violates fewer 

constraints compared to the best existing solver.  
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Table 1: Computational results of the typical Max-CSP instances 

 

Name of 

instances 

number 

of 

constraint 

Best result 

obtained on 

benchmark 

Best CPU time 

obtained on 

benchmark 

Number 

of 

run 

Ratio 

Minimum 

Ratio 

mean 

Ratio 

mode 

Mean 

of 

iterations 

mean 

of 

CPU 

Time 

geom-40-2 78 22 0.03s 200 1.05 1.36 1.27 58.76 0.006s 

geom-30a-4 81 4 0.323 s 200 1.25 3.26 2.75 192.29 0.046s 

vcsp-25-10-25-87-44 75 32 5.198s 200 1.38 1.99 1.78 254.42 0.212s 

vcsp-25-10-21-85-33 63 19 0.219 s 200 1.58 2.81 2.42 261.8 0.255s 

vcsp-25-10-25-87-36 75 29 1.587 s 200 1.21 2.71 1.86 244.96 0.209s 

scenw-6-sub4-20 477 23 0.132 s 100 1.83 4.91 2.39 326.1 1.023s 

scenw-6-sub2 353 22 0.374s 100 1.32 3.96 1.86 326.31 2.466s 

scenw-6-sub2 353 22 0.374s 100 1.32 3.96 1.86 326.31 2.466s 

kbtree-9-7-3-5-90-08 189 123 0.311 s 100 0.93 1.44 1.24 235.43 0.076s 

kbtree-9-7-3-5-60-01 189 54 0.335s 100 1.17 2.1 1.48 214.25 0.071s 

kbtree-9-7-3-5-90-11 189 123 0.338s 100 0.98 1.52 1.24 213.16 0.068s 

kbtree-9-7-3-5-80-50 189 97 0.846 s 100 1.03 1.73 1.26 189.65 0.062s 

kbtree-9-7-3-5-70-50 189 72 1.522s 100 1.07 1.84 1.46 217.16 0.069s 

kbtree-9-5-3-5-90-45 255 163 2.297s 100 0.95 1.6 1.21 232.88 0.133s 

kbtree-9-5-3-5-90-10 255 167 3.17s 100 1 1.66 1.26 183.89 0.097s 

kbtree-9-5-3-5-80-47 255 129 4.969s 100 1.09 1.74 1.34 226.37 0.121s 

kbtree-9-5-3-5-80-08 255 134 5.931s 100 1.13 1.51 1.31 266.14 0.141s 

kbtree-9-2-3-5-90-29 309 196 461.111s 100 1.06 1.45 1.2 271.75 0.302s 

kbtree-9-2-3-5-80-50     309 153 1143.39s 100 1.11 1.86 1.28 236.32 0.263s 

cnf-2-80-300-186945 286 25 1.032s 100 1.04 1.3 1.28 35.83 0.015s 

cnf-2-40-1800-067529 667 246 1.367s 50 0.97 1.07 1.06 30.68 0.003s 

cnf-2-40-1500-890427 640 210 1.417s 50 1.01 1.1 1.06 28.7 0.002s 

cnf-2-40-1600-616123 663 227 1.856s 50 0.98 1.06 1.04 27.5 0.002s 

cnf-2-40-2500-147426 685 307 2.139s 50 0.99 1.06 1.05 35.94 0.003s 

cnf-2-40-2600-873121 670 297 3.418s 50 0.97 1.09 1.05 42.22 0.004s 

cnf-2-40-2400-421728 681 291 3.742s 50 1 1.1 1.06 36.94 0.003s 

cnf-2-40-2400-421727 683 284 5.117s 50 1.02 1.12 1.07 41 0.003s 

cnf-2-80-800-815450 710 102 163.366s 50 1.23 1.3 1.28 19.72 0.010s 

cnf-2-80-800-815444 717 107 391.728s 50 1.13 1.25 1.22 29.26 0.013s 

cnf-2-80-1100-992546 946 160 979.48s 50 1.08 1.11 1.11 22.08 0.007s 

cnf-2-80-1200-718241 989 176 1261.0s 50 1.05 1.13 1.14 30.28 0.010s 

maxcut-30-400-5 400 179 6.597s 100 0.97 1.12 1.06 72.73 0.003s 

maxcut-40-480-6 480 193 231.657s 100 1.07 1.2 1.17 37.73 0.005s 

maxcut-30-340-5 340 142 3228.99s 100 0.99 1.19 1.12 40.86 0.004s 

maxcut-30-370-5 370 160 17.851s 100 1.01 1.22 1.09 48.85 0.002s 

maxcut-40-420-5 420 161 20.163s 100 1.06 1.23 1.2 40.17 0.004s 

maxcut-40-440-6 440 173 29.374 s 100 1.07 1.24 1.14 42.58 0.004s 

maxcut-40-480-8 480 192 136.187 s 100 1.03 1.22 1.17 43.99 0.004s 

maxcut-40-540-3 540 225 717.983s 50 1.07 1.17 1.12 44.1 0.004s 

maxcut-40-520-1 520 210 272.491s 50 1.07 1.27 1.17 33.84 0.003s 

maxcut-40-520-10 520 213 340.681s 50 1.08 1.16 1.14 60.08 0.005s 

maxcut-50-580-6 580 219 940.592s 50 1.11 1.29 1.19 34.54 0.004s 

maxcut-40-580-1 580 241 161.684s 50 1.05 1.22 1.14 52.26 0.005s 

maxcut-50-560-10 560 212 176.564s 50 1.07 1.24 1.21 48.58 0.011s 

maxcut-60-580-2 580 207 2121.51s 50 1.15 1.26 1.27 31.54 0.007s 

c-fat200-2 16865 176 1.217s 25 1.22 1.22 1.22 366.36 0.963s 

c-fat500-2 116111 474 283.354s 25 1.24 1.24 1.25 374.12 4.906s 

c-fat500-10 78623 374 1101.83s 25 1.32 1.33 1.33 410.08 5.386s 

c-fat500-5 

 

102059 436 1151.8s 25 1.38 1.38 1.38 369.2 4.899s 
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However, in some cases as “vcsp-25-10-21-85-33”, 

“kbtree-9-7-3-5-60-01”, “maxcut-50-580-6”, “c-

fat500-10”, etc, our approach violate plus the 

constraints more than author solvers. Finally, we can 

conclude that the best results are obtained by this 

approach.  

 

5. Conclusion 

In this paper, we have proposed a new approach for 

solving binary maximal constraint satisfaction 

problems. The interesting steps of this approach are: 

proposing the new model of maximal constraint 

satisfaction problem as a 0-1 quadratic program 

subject to linear constraints and using the 

continuous Hopfield network to solve this problem. 

The most interesting propriety of this approach is 

used to give the solution of the binary Max-CSP. It 

is also interesting to note that this method can be 

used with a non-binary Max-CSP    after converting 

the latter into a binary Max-CSP    [14]. The 

experimental results show that our method can find 

a good optimal solution in short time compared to 

other solvers. Future directions of this research are 

reducing the architecture of Hopfield neural network 

and applying this approach to get a good solution of 

real world problems such as warehouse location 

problem, max-clique and max-cut. 
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